Ученые Пермского политеха изучили, как в костных имплантах образуются трещины
18.10.2024
Поврежденная кость нуждается в заживлении. В этом могут помочь специальные импланты – скаффолды. Они представляют собой пористый каркас для замещения и восстановления дефектов костной ткани, который имитирует ее структуру и свойства. Тем не менее, скаффолды могут разрушаться и трескаться из-за ежедневных нагрузок, которые испытывают кости, что негативно сказывается на заживлении травмы. Ученые Пермского политеха исследовали, как образуются и распространяются трещины в скаффолдах при монотонной осевой нагрузке, и выявили наиболее устойчивую к повреждениям модель.
Исследование опубликовано в журнале Medical Engineering & Physics, том 132, 2024. Исследование выполнено в рамках программы Мегагрантов, контракт №075-15-2021-578 от 31 мая 2021 года и научно-исследовательского проекта №FSNM-2023-0003.
На протяжении человеческой жизни кости и их импланты испытывают различные нагрузки. Речь идет не только про физическую активность – даже в статичном вертикальном положении они подвергаются давлению. Например, на бедренную кость сверху действует сила тяжести веса головы и рук, а снизу, в коленном суставе, действует сила опоры.
Под действием постоянных нагрузок существует риск повреждения имплантированного скаффолда. Это приводит к ухудшению его способности поддерживать рост костной ткани и может стать причиной инфекций и воспаления из-за нарушения целостности каркаса, поэтому импланты должны быть устойчивы к нагрузкам.
Различные структуры скаффолдов по-разному реагируют на разрушающие воздействия. Ученые Пермского политеха исследовали процессы образования трещин при растягивающих (например, поднятие тяжестей с вытянутыми руками) и сжимающих (например, вес тела) нагрузках на скаффолды разного строения.
Ученые рассмотрели четыре вид костных имплантов с разными типами структуры. Они представляют собой поверхности, которые охватывают необходимую площадь, не заполняя ее целиком и оставляя пустые пространства – поры. Скаффолды выглядят как сложная сеть повторяющихся элементов. Каждая модель отличается направлением этого узора.
Растягивающую и сжимающую нагрузку для каждого образца импланта моделировали внутри специального ПО, которое воссоздает условия реального эксперимента с ростом трещин по произвольным путям. Политехники разработали алгоритм, позволяющий выделить зоны потенциального роста трещин.
– Мы проанализировали модели различных типов структур скаффолдов, созданных на основе наиболее часто используемых ячеек, и выяснили, что при прочих равных геометрических характеристиках процесс разрушения сильно зависит от строения пористой структуры, – рассказывает Михаил Ташкинов, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ, кандидат физико-математических наук.
Также оказалось, что чем больше жесткость изделия, тем вероятнее возникновение трещин и тем раньше структура разрушается при растяжении.
– На основе методов численного моделирования разрушения и распространения трещин можно выбрать структуру скаффолда, которая будет наиболее эффективна с точки зрения механического отклика при заданных нагрузках, – комментирует Александр Шалимов, старший преподаватель, младший научный сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» ПНИПУ.
Исследование ученых ПНИПУ позволит при проектировании скаффолдов учитывать их микроструктуру, чтобы минимизировать риск повреждения при различных физических нагрузках. Понимание механизмов разрушения имплантов – это возможность в будущем разрабатывать новые более эффективные и прочные искусственные заменителей костей.
Исследование опубликовано в журнале Medical Engineering & Physics, том 132, 2024. Исследование выполнено в рамках программы Мегагрантов, контракт №075-15-2021-578 от 31 мая 2021 года и научно-исследовательского проекта №FSNM-2023-0003.
На протяжении человеческой жизни кости и их импланты испытывают различные нагрузки. Речь идет не только про физическую активность – даже в статичном вертикальном положении они подвергаются давлению. Например, на бедренную кость сверху действует сила тяжести веса головы и рук, а снизу, в коленном суставе, действует сила опоры.
Под действием постоянных нагрузок существует риск повреждения имплантированного скаффолда. Это приводит к ухудшению его способности поддерживать рост костной ткани и может стать причиной инфекций и воспаления из-за нарушения целостности каркаса, поэтому импланты должны быть устойчивы к нагрузкам.
Различные структуры скаффолдов по-разному реагируют на разрушающие воздействия. Ученые Пермского политеха исследовали процессы образования трещин при растягивающих (например, поднятие тяжестей с вытянутыми руками) и сжимающих (например, вес тела) нагрузках на скаффолды разного строения.
Ученые рассмотрели четыре вид костных имплантов с разными типами структуры. Они представляют собой поверхности, которые охватывают необходимую площадь, не заполняя ее целиком и оставляя пустые пространства – поры. Скаффолды выглядят как сложная сеть повторяющихся элементов. Каждая модель отличается направлением этого узора.
Растягивающую и сжимающую нагрузку для каждого образца импланта моделировали внутри специального ПО, которое воссоздает условия реального эксперимента с ростом трещин по произвольным путям. Политехники разработали алгоритм, позволяющий выделить зоны потенциального роста трещин.
– Мы проанализировали модели различных типов структур скаффолдов, созданных на основе наиболее часто используемых ячеек, и выяснили, что при прочих равных геометрических характеристиках процесс разрушения сильно зависит от строения пористой структуры, – рассказывает Михаил Ташкинов, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ, кандидат физико-математических наук.
Также оказалось, что чем больше жесткость изделия, тем вероятнее возникновение трещин и тем раньше структура разрушается при растяжении.
– На основе методов численного моделирования разрушения и распространения трещин можно выбрать структуру скаффолда, которая будет наиболее эффективна с точки зрения механического отклика при заданных нагрузках, – комментирует Александр Шалимов, старший преподаватель, младший научный сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» ПНИПУ.
Исследование ученых ПНИПУ позволит при проектировании скаффолдов учитывать их микроструктуру, чтобы минимизировать риск повреждения при различных физических нагрузках. Понимание механизмов разрушения имплантов – это возможность в будущем разрабатывать новые более эффективные и прочные искусственные заменителей костей.
Марина Осипова © Вечерние ведомости
Читать этот материал в источнике
Читать этот материал в источнике
Екатеринбуржцам напомнили о рисках прогулок по льду
Четверг, 21 ноября, 19.39
Свердловчанку осудят в Челябинске за контрабанду в крупном размере
Четверг, 21 ноября, 18.55
Под Екатеринбургом Daewoo Nexia «залетела» под грузовик
Четверг, 21 ноября, 18.04