Возрастное ограничение 18+
В Пермском Политехе создали нейросеть для анализа спортивных достижений
Для эффективной работы тренеров в воспитании будущих спортсменов в тренировочном процессе необходимо создание динамического цифрового портрета обучаемого, включающего в себя получение показателей различных способностей и физических данных для планирования тренировок и перспектив развития спортсмена. Разработчики Пермского Политеха создали нейросеть, которая при помощи данных, получаемых с видеокамер, определит объективный уровень спортсмена на текущий момент и по результатам тестирования в автоматическом режиме составит индивидуальный рейтинг, который позволит оценивать результат развития в динамике.
Исследование опубликовано в журнале «Прикладная математика и вопросы управления / Applied Mathematics and Control Sciences». Разработка выполнена в рамках Программы академического стратегического лидерства «Приоритет-2030». Тестирование нейросети проводилось на футболистах.
Обычно контроль правильности выполнения тех или иных упражнений в процессе тренировки осуществляет тренер. Однако нельзя говорить о полной беспристрастности и абсолютной объективности при непосредственном участии человека в тестировании. Кроме того, один тренер зачастую физически не в состоянии качественно проводить одновременное тестирование нескольких человек, поэтому внедрение компьютерных технологий в процесс тренировок даст существенный прирост производительности труда в работе наставника.
Для автоматического контроля выполнения требований необходимо анализировать положение тела человека в пространстве и во времени, что обусловливает необходимость постановки и решения задачи анализа изображений, получаемых с видеокамер в виде некоторого видеоряда.
– Для представления положения тела человека в памяти компьютера используются ключевые точки, которые показывают местоположение основных суставов человека на изображении. Если исследуется последовательный ряд изображений, то получают положения точек в пространстве и во времени, по которым можно оценивать действия человека, – сообщает доцент кафедры вычислительной математики, механики и биомеханики Олег Ильялов.
Ключевыми точками являются левое и правое плечо, левый и правый локоть, левое и правое колено и так далее. Ключевые точки охватывают и голову человека, что может быть использовано для отработки правильной игры головой.
– На первом этапе алгоритма видеоряд разбивается на отдельные кадры, далее идет процесс поиска людей, их ключевых точек и спортивного инвентаря, с которым футболист выполняет упражнение. После того как вся необходимая информация с кадра собрана, происходит запись в файл для последующей обработки и анализа требований к упражнению, - делится аспирант кафедры «Вычислительная математика, механика и биомеханика» Александр Терехин.
Тестирование прототипа показало, что предложенную политехниками нейросеть можно использовать при оценке качества тренировочного процесса. Мероприятие для возрастной категории 18+
Исследование опубликовано в журнале «Прикладная математика и вопросы управления / Applied Mathematics and Control Sciences». Разработка выполнена в рамках Программы академического стратегического лидерства «Приоритет-2030». Тестирование нейросети проводилось на футболистах.
Обычно контроль правильности выполнения тех или иных упражнений в процессе тренировки осуществляет тренер. Однако нельзя говорить о полной беспристрастности и абсолютной объективности при непосредственном участии человека в тестировании. Кроме того, один тренер зачастую физически не в состоянии качественно проводить одновременное тестирование нескольких человек, поэтому внедрение компьютерных технологий в процесс тренировок даст существенный прирост производительности труда в работе наставника.
Для автоматического контроля выполнения требований необходимо анализировать положение тела человека в пространстве и во времени, что обусловливает необходимость постановки и решения задачи анализа изображений, получаемых с видеокамер в виде некоторого видеоряда.
– Для представления положения тела человека в памяти компьютера используются ключевые точки, которые показывают местоположение основных суставов человека на изображении. Если исследуется последовательный ряд изображений, то получают положения точек в пространстве и во времени, по которым можно оценивать действия человека, – сообщает доцент кафедры вычислительной математики, механики и биомеханики Олег Ильялов.
Ключевыми точками являются левое и правое плечо, левый и правый локоть, левое и правое колено и так далее. Ключевые точки охватывают и голову человека, что может быть использовано для отработки правильной игры головой.
– На первом этапе алгоритма видеоряд разбивается на отдельные кадры, далее идет процесс поиска людей, их ключевых точек и спортивного инвентаря, с которым футболист выполняет упражнение. После того как вся необходимая информация с кадра собрана, происходит запись в файл для последующей обработки и анализа требований к упражнению, - делится аспирант кафедры «Вычислительная математика, механика и биомеханика» Александр Терехин.
Тестирование прототипа показало, что предложенную политехниками нейросеть можно использовать при оценке качества тренировочного процесса. Мероприятие для возрастной категории 18+
Получать доступ к эксклюзивным и не только новостям Вечерних ведомостей быстрее можно, подписавшись на нас в сервисах «Новости в Дзене» и «Google Новости».
Поддержать редакцию
Информация
Комментировать статьи на сайте возможно только в течении 60 дней со дня публикации.


Мэрия Екатеринбурга избавляется от последнего пакета акций некогда целиком муниципальной «ЕЭСК»
Библиотеки малых городов Свердловской области смогут получить гранты на цифровые проекты
Выдающихся сотрудников Почты в Свердловской области наградили знаком отличия «Мастер связи»